Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода.
Его архитектура состоит из двух основных блоков:
▪️Энкодер (Encoder) (слева). Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве. ▪️Декодер (Decoder) (справа). Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность.
Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.
Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности.
В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка.
Архитектура Transformer используется преимущественно в языковых моделях. Их обучают на большом количестве текстов. Наиболее известная задача, в которой используются такие модели, это, конечно, генерация новых текстов. Нейросеть должна предсказать следующее слово в последовательности, отталкиваясь от предыдущих. Transformer же изначально был разработан для перевода.
Его архитектура состоит из двух основных блоков:
▪️Энкодер (Encoder) (слева). Этот блок получает входные данные (инпут) и создаёт их представления в векторном пространстве. ▪️Декодер (Decoder) (справа). Этот блок использует представления, полученные от энкодера, а также другие входные данные, чтобы сгенерировать последовательность.
Основная фишка архитектуры Transformer заключается в наличии специального слоя — attention. Этот слой как бы указывает модели обращать особое внимание на определённые слова в последовательности. Это позволяет более эффективно обрабатывать контекст и улавливать сложные зависимости в тексте.
Во время обучения Transformer энкодер получает инпут (предложение) на определённом языке. Декодеру дают то же предложение, но на другом, целевом, языке. В энкодере слой attention может использовать все слова в предложении для создания контекстуализированного представления каждого слова, а декодер использует информацию об уже сгенерированных словах для предсказания следующего слова в последовательности.
В целом, ключевой особенностью механизма attention является его способность динамически фокусироваться на различных частях входной последовательности при обработке каждого слова, что позволяет модели лучше понимать контекст и нюансы языка.
#глубокое_обучение #NLP
BY Библиотека собеса по Data Science | вопросы с собеседований
You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.
Telegram Auto-Delete Messages in Any Chat
Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.
Библиотека собеса по Data Science | вопросы с собеседований from fr